A quadratic equation is of the form ax^2 + bx + c = 0, where a, b, and c are constants. The roots of a quadratic equation can be calculated using the quadratic formula: (-b ± √(b^2 - 4ac)) / (2a).
import math
def find_roots(a, b, c):
discriminant = b ** 2 - 4 * a * c
if discriminant > 0:
root1 = (-b + math.sqrt(discriminant)) / (2 * a)
root2 = (-b - math.sqrt(discriminant)) / (2 * a)
return root1, root2
elif discriminant == 0:
root = -b / (2 * a)
return root, root
else:
real_part = -b / (2 * a)
imaginary_part = math.sqrt(abs(discriminant)) / (2 * a)
root1 = complex(real_part, imaginary_part)
root2 = complex(real_part, -imaginary_part)
return root1, root2
# Taking input for the coefficients of the quadratic equation and calculating its roots
def calculate_and_display_roots():
a = float(input("Enter the coefficient a: "))
b = float(input("Enter the coefficient b: "))
c = float(input("Enter the coefficient c: "))
roots = find_roots(a, b, c)
print("Roots of the quadratic equation:", roots)
calculate_and_display_roots()
Enter the coefficient a: 1
Enter the coefficient b: -3
Enter the coefficient c: 2
Roots of the quadratic equation: (2.0, 1.0)
Enter the coefficient a: 1
Enter the coefficient b: 2
Enter the coefficient c: 1
Roots of the quadratic equation: (-1.0, -1.0)
The function find_roots(a, b, c)
calculates the roots of a quadratic equation using the quadratic formula.
The function calculate_and_display_roots()
takes input for the coefficients of the quadratic equation, calculates its roots using the aforementioned function, and displays the result.